Variational Approach to Vector Field Decomposition
نویسندگان
چکیده
For the feature analysis of vector fields we decompose a given vector field into three components: a divergence-free, a rotation-free, and a harmonic vector field. This Hodgetype decomposition splits a vector field using a variational approach, and allows to locate sources, sinks, and vortices as extremal points of the potentials of the components. Our method applies to discrete tangential vector fields on surfaces, and is of global nature. Results are presented of applying the method to test cases and a CFD flow.
منابع مشابه
Identifying Vector Field Singularities Using a Discrete Hodge Decomposition
We derive a Hodge decomposition of discrete vector fields on polyhedral surfaces, and apply it to the identification of vector field singularities. This novel approach allows us to easily detect and analyze singularities as critical points of corresponding potentials. Our method uses a global variational approach to independently compute two potentials whose gradient respectively co-gradient ar...
متن کاملA Variational Approach to Cardiac Motion Estimation Based on Covariant Derivatives and Multi-scale Helmholtz Decomposition
The investigation and quantification of cardiac motion is important for assessment of cardiac abnormalities and treatment effectiveness. Therefore we consider a new method to track cardiac motion from magnetic resonance (MR) tagged images. Tracking is achieved by following the spatial maxima in scale-space of the MR images over time. Reconstruction of the velocity field is then carried out by m...
متن کاملVariational Dense Motion Estimation Using the Helmholtz Decomposition
We present a novel variational approach to dense motion estimation of highly non-rigid structures in image sequences. Our representation of the motion vector field is based on the extended Helmholtz Decomposition into its principal constituents: The laminar flow and two potential functions related to the solenoidal and irrotational flow, respectively. The potential functions, which are of prima...
متن کاملVector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملOptimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کامل